You are here: Home > Entrance Exam
All posts from

# Joint Admission Test JAM Chemistry (CY) Syllabus 2022 : Indian Institute Of Technology

Organisation : Indian Institute Of Technology
Exam Name : Joint Admission Test JAM
Announcement : Joint Admission Test JAM Chemistry (CY) Syllabus
Website : https://jam.iitg.ac.in/

Contents

## Joint Admission Test JAM Syllabus

JAM is a Computer Based Test (CBT) to be conducted in SEVEN different subjects: Biotechnology (BT), Chemistry (CY), Economics (EN), Geology (GG), Mathematical Statistics (MS), Mathematics (MA), Physics (PH).

Related / Similar Syllabus : GATE Physics (PH) Syllabus 2023

## JAM Chemistry (CY) Syllabus

Physical Chemistry
Atomic and Molecular Structure:
Planck’s black body radiation, Photoelectric effect, Bohr’s theory, de Broglie postulate, Heisenberg’s Uncertainty Principle; Schrödinger’s wave equation (including mathematical treatment), postulates of quantum mechanics, normalized and orthogonal wave functions, its complex conjugate (idea of complex numbers) and significance of Ѱ 2; Operators; Particle in one-dimension box, radial and angular wave functions for hydrogen atom, radial probability distribution; Finding maxima of distribution functions (idea of maxima and minima), energy spectrum of hydrogen atom; Shapes of s, p, d and f orbitals; Pauli’s Exclusion Principle; Hund’s rule of maximum multiplicity.

Gaseous State:
Kinetic molecular model of a gas: collision frequency; collision diameter; mean free path and viscosity of gases; Maxwell-Boltzmann distribution: molecular velocities, law of equipartition of energy, molecular basis of heat capacities; Ideal gases, and deviations from ideal gas behaviour, van der Waals equation of state; critical state, law of corresponding states.

Liquid State:
Physical properties of Liquid, vapour pressure, surface tension and co-efficient of viscosity and their applications; effect of concentration of solutes on surface tension and viscosity; effect of temperature on viscosity of liquids.

Solid State:
Unit Cells, Miller indices, crystal systems and Bravais Lattices, elementary applications of vectors to crystal systems; X-ray diffraction, Bragg’s Law, Structure of NaCl, CsCl, and KCl, diamond, and graphite; Close packing in metals and metal compounds, semiconductors, insulators; Defects in crystals, lattice energy; isomorphism; heat capacity of solids.

Chemical Thermodynamics:
Mathematical treatment: Exact and in-exact differentials, partial derivatives, Euler’s reciprocity, cyclic rule; Reversible and irreversible processes; Laws of thermodynamics, thermochemistry, thermodynamic functions, such as enthalpy, entropy, and Gibbs free energy, their properties and applications; Partial molar quantities, dependence of thermodynamic parameters on composition, Gibbs Duhem equation, chemical potential and its applications.

Chemical and Phase Equilibria:
Law of mass action; K p, Kc , K x and Kn; Effect of temperature on K; Le-Chatelier principle; Ionic equilibria in solutions; pH and buffer solutions; Salt hydrolysis; Solubility and solubility product; Acid – base titration curves; Indicators; Dilute solutions; Raoult’s and Henry’s Laws and their applications; Colligative properties; Gibbs phase rule; Phase equilibria; single and two-component phase diagrams.

Electrochemistry:
Conductivity, equivalent and molar conductivity and their properties; Kohlrausch law; DebyeHückel- Onsager equation; Ionic velocities, mobilities, transference numbers; Applications of conductance measurement; Quantitative aspects of Faraday’s laws of electrolysis, applications of electrolysis in metallurgy and industry; Electromotive force of a cell, Nernst equation; Standard electrode potential, Electrochemical series; Concentration cells with and without transference; Applications of EMF measurements including potentiometric titrations.